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Abstract.
We give a brief overview of the problem of quark confinement inhadronic physics, and

outline a few of the suggested explanations of the confining force.

PACS numbers: 12.38.Aw, 11.15.Ha, 11.15.Tk, 12.38.Gc, 12.38.Lg, 02.30.Rz, 14.65.-q

1. Introduction

The hadron spectrum found in nature consists of color singlet combinations of color non-
singlet objects: the quarks and gluons. Unlike atomic physics, where electrons can readily
be separated from atoms, there is no color-charge version ofionization in hadronic physics.
Every attempt to kick a quark free from a hadron, via high-energy collisions, only results
in the production of more color-singlet hadrons; a non-singlet particle is never produced.
Particle and nuclear physicists have become accustomed to this fact, which is often referred
to as “color confinement”, but after thirty-four years of intense effort this very basic feature of
hadron physics still has no generally agreed upon explanation. Color confinement is therefore
a hard problem. In this article we would like to discuss some aspects of this problem which
we think are important, and to briefly survey a few of the main avenues of research.

To begin with, what would be the energy of an isolated quark? In gauge theories,
abelian or non-abelian, a charge density,ρa

quark, is the source of a longitudinal electric field,
as required by the Gauss Law

~∇ ·~Ea = ρa
quark−g fabcAb

kEc
k (1)

where the term containing the structure constant of the gauge group f abc and the gauge field
~Aa is only present in non-abelian gauge theories and reflects the non-vanishing color electric
charge of the gluons. Their charge is in the8 representation of the SU(3) gauge group, and
cannot neutralize the color charge of a quark in the3 representation. So the color electric
field of an isolated quark could only end on another isolated quark, or else extend out to
infinity. The fact that isolated quarks are not seen in naturemeans that the energy stored
in the associated color electric field must be very large. Buthow large? Suppose we try to
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free a quark from a hadron by hitting it with a high energy (real or virtual) photon. As the
struck quark begins to move away from the other quarks in the hadron, it brings along the
color electric field necessary to satisy the non-abelian Gauss Law. If the energy stored in the
color electric field becomes large enough, then the system isunstable to light quark-antiquark
pair creation. The antiquark of the pair binds to the struck quark, resulting in a color singlet,
and the quark of the pair binds to the remaining quarks of the hadron, forming another color
singlet. The two color singlet hadrons are generally still in highly excited states, and decay
into lighter hadrons. The end result is a shower of ordinary hadrons, rather than a free quark
and a color-ionized hadron.

So a hadron scattering experiment will not answer our question about the energy stored
in the color electric field of a free quark, at least not directly. Our knowledge about this energy
is therefore indirect, and comes from two sources: numerical simulations, and a pattern in the
hadron spectrum known as Regge trajectories. Let us imagine“dialing” the bare quark mass
parameters in the QCD Lagrangian so that all quarks are very heavy; so heavy, in fact, that
pair creation processes do not become important until quarkseparations reach macroscopic
(or even cosmic!) distances. Then, starting with a tightly bound color singlet object such as
a meson, and measuring the energy required to slowly separate the massive constituent quark
and antiquark by a distanceR, we get an estimate for the static quark potentialV(R), and this
is essentially a measure of the energy stored in the color electric field due to the quarks. Of
course, in nature the current quark masses are whatever theyare, and cannot be changed, but
on a computer anything is possible: Nothing prevents us fromsimulating a version of QCD
with very massive quarks, as we will discuss in more detail below.

Our second source of information about the static quark potential is derived from the
actual hadron spectrum. In the spectrum there exist certainmetastable states which are
sufficiently long-lived to show up as resonances in scattering cross-sections. The fact that
it takes some time for these metastable states to decay via quark pair creation means that, for
the short period prior to decay, the resonances are sensitive to interquark forces in the absence
of liqht quark pair creation. From the masses of the resonantstates, we can therefore learn
a great deal about states with comparatively large quark separations, and about the energy
which is stored in the associated color electric fields.

2. The Linear Potential

The following theorem [1] can be proven in lattice gauge theory: the force between a static
quark and antiquark is always attractive but cannot increase with distance,i.e.

∂V
∂R

> 0 ,
∂2V
∂R2 ≤ 0 . (2)

The second inequality is saturated by a linear potential; the static quark potential can rise no
faster than linearly with distance. The theorem does not tell us that the static quark potential
actuallydoesrise linearly, but hadron phenomenology suggests, and computer simulations
convincingly demonstrate, that this is the true, or at leastvery close to the true, behavior of
the potential at large quark separations.
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Figure 1. Regge trajectories for the low-lying mesons (adapted from ref. [2]).

2.1. Regge Trajectories and the Spinning Stick Model

A remarkable pattern emerges in the hadronic spectrum, whenthe spin of mesons (and
baryons) is plotted against their squared mass, as shown in Fig. 1. In such plots the mesons
and baryons of given flavor quantum numbers seem to lie on nearly parallel straight lines,
known as linear Regge trajectories. This is a very striking feature of the hadronic spectrum,
nothing similar is found in the electroweak theory, and the question is why it occurs.

Suppose that we picture a meson as a straight line of lengthL = 2R, with mass per
unit lengthσ. The line rotates about a perpendicular axis through its midpoint, such that the
endpoints of the line are moving at the speed of light,v(R) = c = 1. Then for the energy in
the rest frame,i.e. the mass, of the spinning stick we have

m= Energy= 2
∫ R

0

σdr
√

1−v2(r)
= 2

∫ R

0

σdr
√

1− r2/R2
= πσR , (3)

and for the angular momentum

J = 2
∫ R

0

σrv(r)dr
√

1−v2(r)
=

2
R

∫ R

0

σr2dr
√

1− r2/R2
= 1

2πσR2 . (4)

Comparing the two expressions, we see that

J =
1

2πσ
m2 = α′m2 (5)

The constantα′ is known as the“Regge slope”.
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From the data one estimatesα′ = 1/(2πσ) = 0.9 GeV−2, which gives a mass/unit length
of the string, or“string tension”, of

σ ≈ 0.18 GeV2 ≈ 0.9 GeV/fm. (6)

The spinning stick model is, of course, only a caricature of the real situation. In fact the
various Regge trajectories do not pass through the origin, and have slightly different slopes.
To make the model more realistic, one might want to relax the requirement of rigidity, and
allow the “stick” to fluctuate in transverse directions. This line of thought leads to string
theory. However, since QCD is the theory of quarks and gluons, the question to be answered
is how a stick-like or string-like object actually emerges from that theory.

One possible answer is via the formation of a color electric flux tube. We imagine that the
color electric field running between a static quark and antiquark is, for some reason, squeezed
into a cylindrical region, whose cross-sectional area is nearly constant as quark-antiquark
separationL increases. In that case, the energy stored in the color electric field will grow
linearly with quark separation,i.e.

Energy= σL with σ =
∫

d2x⊥
1
2
~Ea ·~Ea (7)

where the integration is over a cross-section of the flux tube. This means that there will be
a linearly rising potential energy associated with static sources (the “static quark potential”),
and an infinite energy is required to separate these charges an infinite distance.

In this way the pattern of metastable states in the hadron spectrum suggests a picture of
how the color electric field energy, in the absence of light quark pair creation, would grow
with quark separation.

2.2. Wilson Loops and Lattice Simulations

The most reliable evidence we have about the static quark potential is obtained from computer
simulations of quantum chromodynamics. For this purpose itis useful to simulate a version
of QCD in which the quarks are very massive, and pair creationin the vacuum can be ignored.

Let Q(t) be the creation operator of a state at timet containing a very massive quark and
a very massive antiquark, separated by a distanceR. There are many operators of that sort,
but, unless we fix a gauge, it is necessary forQ to be gauge-invariant. If not, thenQ and
correlators ofQ will simply average to zero in the functional integral over gauge fieldsA and
the quark fieldsψ. Consider the unequal-times correlator

〈Q†(T)Q(0)〉=
1
Z

∫

DADψDψ Q†(T)Q(0) eiS = 〈Ψ0|Q†e−i(H−E0)TQ|Ψ0〉(8)

whereH is the Hamiltonian operator,E0 is the vacuum energy andΨ0 is the vacuum state,
in any gauge (the gauge choice does not matter ifQ is gauge invariant). By transforming the
theory from Minkowski space to Euclidean space by a Wick rotation of the time coordinate
t → it , and inserting a complete set of energy eigenstates{Ψn} with the quantum numbers of
the heavy quark-antiquark pair, the above expression becomes
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〈Q†(T)Q(0)〉euclid=
1
Z

∫

DADψDψQ†(T)Q(0)e−S

= 〈Ψ0|Q†e−(H−E0)TQ|Ψ0〉

= ∑
n

∣

∣

∣
〈Ψ0|Q†|Ψn〉

∣

∣

∣

2
e−EnT (9)

whereEn is the excitation energy (aboveE0) of the energy eigenstateΨn. The notation〈〉euclid

indicates Euclidean-time expectation values, but from here on the “euclid” subscript will be
dropped. We see that at large Euclidean time separations, the correlator is dominated by the
minimum energy state of the Minkowski theory. So to find theminimumenergy possible for a
state containing a heavy quark antiquark pair, satisfying the Gauss Law, we have to calculate

Eqq
min(R) = − lim

T→∞

d
dT

log
[

〈Q†(T)Q(0)〉
]

. (10)

At largeT any choice ofQ will do, providingQ is gauge-invariant, and the quarks are created
at separationR. The simplest choice is

Q = ψ(0) Pexp[i
∫ R

0
dxµAµ] ψ(R) (11)

where the expression between the quark operators is a path-ordered exponential of the matrix-
valued A-field, which lies in the Lie algebra of the gauge group. If the quarks are very heavy
and quark loops can be ignored, then the functional integration over the quark fields can be
carried out explicitly, with the result

〈Q†(T)Q(0)〉= κM−2T
〈

Tr
[

Pei
∮

C dxµAµ

]〉

. (12)

In this expressionκ is a numerical prefactor, coming from a trace over Dirac matrices, and
M is a constant which depends on the bare quark mass (and the UV regulator). Neither of
these terms have any sensitivity to the quark separationR. The term we are interested in is the
remaining expectation value, which involves only the gluonfield

W(C) =
〈

Tr
[

Pei
∮

C dxµAµ

]〉

(13)

where in this case the line integral runs around a closed rectangular contourC of lengthT and
width R. The path-ordered exponential of such line integrals are known asWilson loops. For
a rectangular contour, we will denote the expectation valueby W(R,T), and the part of the
potential which depends onR is extracted from

V(R) = − lim
T→∞

d
dT

W(R,T) . (14)

From now on this will serve as our definition of the heavy quarkpotential.
Nobody knows how to calculateW(R,T) analytically in QCD, whenR andT are large

compared to the length scale set by the fundamental scale of QCD, ΛQCD. However, this
quantity can be calculated in regions of interest by numerical simulations, which require
regulating QCD on a finite lattice. Lattice gauge theory is explained in detail in a number
of texts,e.g. see ref. [3], but very briefly the idea is this: Continuous spacetime is replaced
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by a D=4 dimensional hypercubic lattice; the points on the lattice are called “sites”, the lines
between neighboring sites are “links”, and the squares bounded by four neighboring links
are called “plaquettes”. The Lie algebra-valued gauge fieldAµ(x) of the continuum theory is
replaced by a set of group-valued link variablesUµ(x), associated with links of the lattice. A
Wilson loop is simply the trace of the product of link variables around a closed contour on
the lattice, with the understanding that when the contour runs through a link in the negative x,
y, z, or t directions, then the hermitian conjugateU†

µ(x) is used in place ofUµ(x). The lattice
version of the functional integral over gauge fields,

Z =
∫

DU eSW , (15)

is based on the “Wilson action”SW

SW =
β
3 ∑

x

3

∑
µ=1

∑
ν>µ

Tr
[

Uµ(x)Uν(x+µ)U†
µ(x+ν)U†

ν (x)
]

+ c.c . (16)

Numerical (“lattice Monte Carlo”) simulations involve stochastically generating a set of lattice
gauge field configurations according to the probability distributionP[U ] = eSW/Z; an estimate
of the vacuum expectation value of some operator (such as a Wilson loop) is simply the
average value that the operator takes in the set. Every quantity calculated on the lattice is
calculated in units in which the lattice spacinga = 1. To convert to physical units,a must be
assigned a value in, say, fermis, and all lattice results area function of the lattice spacing and
the couplingβ = 2N/g2 for the gauge group SU(N). Of course, the masses of hadrons should
not depend on the lattice spacing, but renormalization theory teaches us that at sufficiently
small couplings, a change ina can be compensated for by a change ing, leaving the spectrum
and other physical quantities invariant.

An example of the static quark potential obtained by latticeMonte Carlo techniques is
shown in Fig. 2. Here the potential, computed at severalβ values, is plotted against quark
separation in units of a certain physical scaler0, which is about 0.5 fm. In this graph we see
very convincing confirmation of the linearity of the static quark potential at large distances. If
the potential rises linearly indefinitely, then the energy of an isolated quark would be infinite.
It is no wonder, then, that color non-singlet particles are not produced in hadronic collisions.

The linear rise of the static quark potential at arbitrarilylarge quark separations is a
rather astonishing and important fact, and the question− the quark confinement problem−
is how to account for such behavior. Until that question is answered satisfactorily, we do not
really understand hadronic physics, nor do we understand the dynamics of non-abelian gauge
theories at large distance scales.

2.3. Further Properties of the Linear Potential

In addition to varying the quark mass in numerical simulations, one can also vary the color
group representation of the “quarks” (i.e. heavy static color sources), and study the effect
on the static quark potential. Numerical simulations, and some general arguments, indicate
that there are two distinct sorts of representation dependence, depending on the static source
separation:
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Figure 2. The static quark potential, obtained from lattice Monte Carlo simulations, in
SU(3) gauge theory. Both potential and quark separation arein units of the “Sommer scale”
r0 ≈ 0.5 f m (adapted from ref. [2]).

(i) Casimir Scaling. Initially the slope of the linear potential− the string tensionσ − is
proportional to the quadratic Casimir of the group representation.

(ii) N-ality Dependence. Asymptotically, the force between charged fields in an SU(N)
gauge theory depends only on the so-called “N-ality” of the group representation, given
by the number of boxes modN in the Young tableau of the representation.

Both of these dependencies have been observed in numerical simulations [4, 5]; there are also
rather convincing arguments, based on energetics, for N-ality dependence at large distances.

We have already mentioned that the color electric field between quarks is collimated into
a flux tube; this precludes long-range van der Waals forces orcolor dipole fields. In addition,
string theory models of hadrons predict a universal, coupling-constant independent correction
to the static quark potential [6]

Vstring(R) = − π
12R

. (17)

There is evidence, again from numerical simulations, for the existence of this small correction
to the linear potential, as well as a spectrum of excitationsof the confining electric flux tube
[7].

Taken together, these features of the static quark potential are quite restrictive; a
completely satisfactory theory of confinement should account for all of them.
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3. Theories of Quark Confinement

There are a number of different approaches to the quark confinement problem. Probably
the most popular idea is that the QCD functional integral is dominated by some special
class of field configurations which cause the expectation value of a large Wilson loop to fall
off exponentially with the minimal area of the loop, i.e.W(C) ∼ exp[−σA(C)]. For large
rectangular loops, this behavior implies a linear static quark potential, with string tensionσ.
The leading candidates for these special configurations aremagnetic monopoles and center
vortices, although other objects such as merons [9], and calorons [10, 11] have also been
advocated. A different approach is based on the special properties of quantization in Coulomb
gauge, as we will describe briefly below. Another idea is to try to solve non-perturbatively for
quark and gluon propagators and vertex functions, analytically by an infrared expansion of
the complete set of Schwinger-Dyson equations, and numerically by solving a truncated set
of these equations. Finally, there is a fascinating relationship between gauge theory inD = 4
dimensions and string theory quantized in a special ten-dimension background geometry
known as anti-DeSitter space. This is the AdS-CFT correspondence

Each of these ideas have been the subject of intense study, and the most we can do here is
to give a brief indication of what they are all about. For someof these scenarios, surprising and
interesting relations between them have been discovered, and some of those will be mentioned
along the way. For a more detailed discussion of material in sections 3.1-3.3 below, see the
review article by one of us [12].

3.1. Magnetic Monopoles and Dual Superconductivity

The linear static potential would be explained if we could understand why the color electric
field, between a quark and an antiquark, should be collimatedinto a cylindrical region
− a flux tube− of constant or nearly constant cross-section. There is a very suggestive
example in low temperature physics known as the Meissner effect: magnetic fields in type II
superconductors are in fact collimated into magnetic flux tubes, known as Abrikosov vortices.
If magnetic monopoles existed in nature, and a monopole-antimonopole pair were placed in
a type II superconductor, the monopoles would be connected by a magnetic flux tube, and
energy stored in the magnetic field would grow linearly with monopole separation. This
example led ’t Hooft [13] and Mandelstam [14] to suggest thatthe QCD vacuum is a “dual
superconductor”, the word “dual” in this case meaning an interchange in the roles of the
electric and magnetic fields. Instead of magnetic charge confined by a magnetic flux tube in
a condensate of electrically charged objects (Cooper pairs), the idea is that color electrically
charged objects (quarks) are confined by an electric flux tubein a condensate of magnetically
charged objects (magnetic monopoles).

The identification of magnetic monopoles in a non-abelian gauge theory requires the
selection of an abelian subgroup of the gauge group. In a theory with a Higgs fieldφ in the
adjoint representation of the gauge group, such as the Georgi-Glashow model, an expectation
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value〈φ〉 6= 0 breaks the SU(N) symmetry to an abelianU(1)N−1 subgroup.‡ By fixing to a
unitary gauge, so that〈φ〉 has some definite direction in the Lie algebra, gauge transformations
in the abelian subgroup leave this direction unchanged. Magnetic monopoles can then be
identified from the abelian magnetic field associated with the gauge bosons of the abelian
subgroup. In QCD there is no Higgs field, but ’t Hooft [16] proposed that a composite gluonic
operator, transforming like a Higgs field in the adjoint representation of the gauge group,
could also serve the purpose of singling out an abelian subgroup.

Numerical studies of the monopole mechanism have gone in twodirections. The first,
pioneered by the Kanazawa group [17], emphasizes a particular composite operator, or,
equivalently, a particular gauge which leaves a remainingU(1)N−1 gauge symmetry. This
gauge is the maximal abelian gauge, and on the lattice it is the gauge which makes link
variables as diagonal as possible;e.g. in SU(2) gauge theory, the object is to maximize

R= ∑
x,µ

Tr[Uµ(x)σ3U
†
µ(x)σ3] (18)

whereσa denote the Pauli matrices. The lattice link variables, which take values in the full
SU(N) group, are then projected to theU(1)N−1 subroup; this procedure is known as “abelian
projection”. One can then identify monopole worldlines in the abelian projected lattice, and
check to see if this monopole content gives the correct string tension and other static properties
of QCD. The idea is successful in a number of respects, the main difficulty is representation
dependence: the force between quarks depends on theirU(1)N−1 electric charges, rather than
their N-ality [18].

Another approach, that has been developed largely by the Pisa group [19], is to define a
monopole creation operatorφM(x) in SU(N) lattice gauge theory, with the monopoles again
defined in some gauge, and check to see that〈φM〉 6= 0. In an ordinary abelian Higgs theory, a
vacuum expectation value〈φ〉 6= 0 breaks the U(1) gauge symmetry of the theory, and we have
an electric superconductor. The idea is that in a non-abelian gauge theory with no elementary
Higgs fields, an expectation value〈φM〉 6= 0 implies the breaking of a dual magnetic symmetry,
and confining gauge theories exist in the “dual superconductor” phase.

The idea of dual superconductivity received a great boost from the work of Seiberg
and Witten [20], who were able to show analytically that in certain supersymmetric gauge
theories, monopole condensation actually does take place.In these theories, unlike QCD,
there exists an elementary Higgs field which can be used to single out a unique abelian
subgroup; fixing the abelian subgroup by a composite operator is unnecessary. In these
particular supersymmetric theories, it is possible to derive explicitly an effective dual abelian
Higgs action, at least if the effects of gluons not belongingto the abelian subgroup are
ignored. But in the resulting effective theory, as in other “monopole dominance” models
[18], the asymptotic string tension between quarks of a given abelian charge depends only on
that abelian charge, and not on the quadratic Casimir or the N-ality of the associated SU(N)

‡ Actually, a local gauge symmetry cannot be spontaneously broken [15], and the distinction between the
“broken” or “Higgs” phase, and the unbroken phase, is rathersubtle. But the “broken gauge symmetry”
terminology is common, even if not strictly correct, and we will continue to use that terminology here.
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representation. Related to this fact is a certain multiplicity of Regge trajectories [21], which
is also rather unlike QCD.

Monopoles also arise in investigations of objects known as “calorons”, which are
instantons at finite temperatures. Instantons are semi-classical solutions of the Euclidean-
time gauge field equations, and finite temperature corresponds to a finite, periodic extension
in the time direction. Recent studies [22] center on a type ofcaloron solution with non-trivial
holonomy found by Kraan and van Baal [10], and by Lee and Lu [11]. The calorons can
be thought of as bound states of monopoles, which tend to moveapart from one another as
the temperature is lowered [23]. It has been suggested that confinement could be attributed
to caloron dynamics. This again raises the question of how a caloron-based confinement
mechanism would obtain the correct N-ality dependence of the string tension extracted from
Wilson loops (see, however, ref. [24]).

3.2. Center Vortices

We have already mentioned that the asymptotic string tension depends only on the N-ality
of the quark charge. This fact is important, and easily understood. First of all, there are an
infinite number of SU(N) representations, but only a finite number of representations of the
ZN subgroup, so the representations of SU(N) can be divided into classes, each with the same
N-ality. Gluons have N-ality equal to zero. This means that when gluons bind to a color
charge in some representationr, the resulting bound state is in a color representationr ′ with
the same N-ality asr. So as a quark in representationr separates from its antiquark, gluons
can be pair-created out of the vacuum, and bind to the quark and antiquark, reducing the color
charge of each. However, the color charge can only be reducedto the lowest dimensional
representation with the same N-ality asr. For example, in SU(2) gauge theory the center
group isZ2, and representations can be divided intoj =half-integer, with N-ality one, and
j =integer, with N-ality zero. As two quarks in thej = 3/2 representation separate, pair-
created gluons can bind to the quarks reducing the color charge to j = 1/2. So the asymptotic
string tension of heavyj = 3/2 quarks is the same as that ofj = 1/2 quarks, and in fact,
by the same argument, the asymptotic string tension of all N-ality=1 quarks are the same.
Likewise, two quarks in the adjoint (j = 1) representation can bind to gluons, forming two
color singlets. The asymptotic string tension ofj = 1 quarks is zero, as is the string tension
of quarks in any N-ality=0 representation.

It is helpful to think about this N-ality dependence in the context of the Euclidean
functional integral over field configurations. In a Monte Carlo simulation, Wilson loops
are simply averaged over some finite set of lattice configurations, generated stochastically
with the appropriate probability weighting. How do these configurations manage to produce
asymptotic string tensions that depend solely on the N-ality of the group representation of the
Wilson loop?

The answer to this question comes from an interesting direction. In 1978 ’t Hooft [25]
introduced a loop operatorB(C) in SU(N) gauge theories, intended to be in some sense “dual”
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to the ordinary Wilson loop operatorW(C), with the rather beautiful commutation property

B(C)W(C′) = e2πi/NW(C′)B(C) (19)

if curvesC andC′ are topologically linked to one another. ’t Hooft argued, just from this
commutation relation and the presumed existence of a mass gap, that〈B(C)〉 has a perimeter-
law falloff exp(−µP(C)) in the confined phase of a gauge theory, and an area-law falloff in
the non-confining Higgs phase. This is precisely opposite tothe behavior of Wilson loops
in those two phases. It turns out thatB(C) is the creation operator for an object known as a
“center vortex”. Roughly speaking, a center vortex is a tubeof magnetic flux, in which the
exponential of the vortex flux, measured by a Wilson loopPexp[i

∮

C′ dxµAµ] running around
the vortex, takes values in theZN center of the SU(N) gauge group. More precisely, creation
of a center vortex which is topologically linked to a given Wilson loop changes the Wilson
loop by a multiplicative factor equal to a center element. A Wilson loop in some group
representationr is multiplied by a factor exp[2πik/N] ∈ ZN which depends only on the N-
ality k of the representationr. This is the crucial property. In order to have a confinement
mechanism in which the string tension of a Wilson loop depends only on the N-ality of the
loop, it is necessary to have configurations which affect loops of the same N-ality in the same
way. Center vortices are the only known field configurations which satisfy this requirement.
In D=4 Euclidean dimensions these objects are actually surfaces; they may be thought of as
having been swept out by a magnetic vortex loop as it propagates in time. In D=3 dimensions
loops can be topologically linked to other loops; in D=4 dimensions loops link to surfaces.

The center vortex confinement mechanism, as elaborated in refs. [25, 26] is quite simple:
Center vortices percolate throughout the vacuum, and Wilson loops derive an area law from
random fluctuations in the number of vortices piercing the loop. This proposal lay dormant
for about fifteen years, but was revived after a series of numerical investigations [27, 28, 29]
turned up rather strong evidence in its favor. This evidenceis reviewed in detail in ref. [12].
Briefly, the numerical techniques are very close to those employed in abelian projection.
Lattice configurations are fixed to a gauge which leaves a residualZN invariance, and SU(N)
group-valued link variables are then projected to the nearest element of theZN subgroup.
The excitations of the projected configurations are thin center vortex configurations known
as “P-vortices”, and these thin vortex sheets appear to lie within thick vortex surfaces in
the unprojected gauge theory. Although gauge fixing is used in the identification, P-vortices
correlate with both the gauge-invariant action density andgauge-invariant Wilson loops on the
unprojected lattice. P-vortex areas scale with lattice coupling as expected from asymptotic
freedom, and by themselves produce an area law falloff for Wilson loops with roughly the
right string tension. When vortices are removed from the original lattice, the string tension
drops to zero, topological charge vanishes, and chiral symmetry is unbroken.

It is worth expanding a little on vortex removal. LetU(C) ∈ SU(N) be a Wilson
loop around curveC, and letZ(C) ∈ ZN be the value of the Wilson loop in the projected
configuration. In SU(2) gauge theory,Z(C) = (−1)l(C), where l(C) is the number of P-
vortices linked to the loop. Denote the corresponding Wilson loop in the vortex-removed
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configuration byU ′(C). These expressions have a simple relationship to one another

U ′(C) = Z(C)U(C) = (−1)l(C)U(C). (20)

Numerically, it is found that the projected and unprojectedWilson loop expectation values,
〈Z(C)〉 and〈Tr[U(C)]〉 respectively, both have area-law falloffs with approximately the same
string tension, while the string tension of Wilson loops in the vortex-removed configuration
〈Tr[U ′(C)]〉 is vanishing. The only way that this can happen, in view of (20), is that the
fluctuations in the sign of〈Tr[U(C)]〉 are correlated to fluctuations in P-vortex linking number.
This correlation of the linking number of P-vortices with the sign of gauge-invariant Wilson
loops, while certainly not a proof of the vortex confinement mechanism, argues strongly in its
favor.

It is also found that the monopole worldlines of the abelian projected lattice lie on P-
vortex worldsheets [18]. A center vortex can, in fact, be thought at any given time as a kind
of monopole-antimonopole chain, in which the abelian magnetic flux of the monopoles and
antimonopoles is collimated along the vortex line. This means that the vortex and abelian
monopole pictures are not really antagonistic; the collimation of the monopole flux is exactly
what is required for the monopole picture to satisfy the required N-ality dependence for the
asymptotic string tension. We also note that Casimir scaling, in the vortex picture, is due
to the finite thickness of center vortices [30], and spatial variations of flux within the vortex
core [31]. In a gauge theory based on the group G(2), which hasa trivial center subgroup,
the prediction of the vortex theory is that the asymptotic string tension is zero. This agrees
with expectations, since in G(2) gauge theory gluons can combine with quark charges in any
representation to form a color singlet.

The main reservations to the vortex picture are numerical: the string tensions in the
projected lattices are not quite the same as for the unprojected lattice, and there are concerns
regarding the gauge-fixing procedure, which is plagued by Gribov copies [32].

3.3. Coulomb Energy and the Gribov Horizon

By definition gauge invariance implies a redundancy in the degrees of freedom of a gauge
field. Hamiltonian dynamics requires an elimination of thisredundancy via a gauge choice,
resulting in a formulation involving the correct number of physical degrees of freedom. In
Coulomb gauge, in particular, there is a very suggestive separation between the electric
energy due to the longitudinal (i.e. Coulombic) and transverse electric fields. Classically,
the Coulomb gauge Hamiltonian has the formS

H = 1
2

∫

d3x (~Ea,tr ·~Ea,tr +~Ba ·~Ba)+ 1
2

∫

d3xd3y ρa(x)Kab(x,y)ρb(y) (21)

whereρa is the (matter plus gauge field) color charge density,~Ea,tr is the transverse color
electric field operator, and

Kab(x,y) =
[

M−1(−∇2)M−1]ab
x,y (22)

S Quantum-mechanically there are some operator-ordering modifications, which we will not discuss here.
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is the instantaneous Coulomb propagator. The Coulomb interaction energy is given by the
non-local term in the Hamiltonian, involvingρKρ. In an abelian theory,K(x,y) is simply
proportional to 1/|~x−~y|. In a non-abelian theory,Kab(x,y) is dependent on the gauge-field
through the Faddeev-Popov operator

Mac = −∂iD
ac
i (A) = −∇2δac− εabcAb

i ∂i . (23)

Could it be that the vacuum expectation value of the Coulomb energy, for static sources, leads
to an asymptotically linear, rather than 1/r, potential?

Gribov [33] and Zwanziger [34] have argued in favor of this possibility. The argument
is roughly as follows: In Coulomb gauge, the integration over gauge fields needs be restricted
to A-fields satisfying∇ ·A = 0, and for which the Faddeev-Popov operator is positive;i.e. for
which the eigenvalues of theM operator are all positive. This positivity condition restricts
the gauge fields to a subspace of gauge-field configuration space; the boundary of this region,
where theM operator develops a zero eigenvalue, is known as the “Gribovhorizon”. Since the
Coulomb propagatorKab(x,y) depends on the inverse ofM this operator becomes very large
in the neighborhood of the Gribov horizon. Now, since the dimension of configuration space
is very large, it is reasonable that the bulk of configurations are located close to the horizon
(just as the volume measurerd−1dr of a ball ind-dimensions is sharply peaked near the radius
of the ball). Since it is the inverse of theM operator which appears in the Coulomb energy, it
is possible that the near-zero eigenvalues of this operatorwill enhance the magnitude of the
energy at large quark separations, possibly resulting in a confining potential at large distances.
Moreover, it is possible to prove the following inequality [35]: If V(R) is the static quark
potential (i.e. the minimal energy of a physical state containing two staticquark-antiquark
sources in the fundamental representation), andVcoul(R) is the Coulomb potential obtained
from the vacuum expectation value〈ρKρ〉, then

V(R) ≤Vcoul(R). (24)

This means that “Coulomb confinement” is a necessary (but notsufficient) condition for
confinement. The interesting question is whetherVcoul(R) is linear and, if linear, whether
the corresponding string tensionσcoul equals the string tension of the static quark potential.

These questions have been investigated numerically, via lattice Monte Carlo in Coulomb
gauge. The answer is thatVcoul(R) does indeed rise linearly [36, 37]. Moreover, the infrared
divergent Coulombic energy of an isolated charge comes about by precisely the mechanism
suggested by Gribov and Zwanziger: a large density of eigenvalues of the Faddeev-Popov
operator in the neighborhood of the zero eigenvalue [38]. When center vortices are removed
from lattice configurations, the Coulombic energy is non-confining, and the Faddeev-Popov
eigenvalue distribution resembles that of the abelian theory. Together with the fact that center
vortices are field configurations lying on the Gribov horizon, this suggests a close relationship
between these two confinement scenarios.

On the other hand, it also turns out that the Coulomb string tension is about three times
larger than the string tension of the static quark potential, so the behavior ofK(x,y) cannot
be the whole story behind confinement. There is, in fact, an even more basic objection:
Any theory of confinement based on one-gluon (or one quasi-particle) exchange will have



Quark Confinement: The Hard Problem of Hadron Physics 14

difficulties in explaining why the color electric field is collimated into a flux tube. In general,
one-particle exchange models of the confining force give rise to long-range dipole fields. If a
proton, say, were held together by one-gluon exchange forces, it is hard to see why there could
not be long-range color van-der-Waals forces among distantprotons, contrary to observation.

One interesting approach, followed in ref. [39], is to try toconstruct physical states in
Coulomb gauge, whose energy is lower than that of a quark-antiquark pair plus their Coulomb
field, by adding constituent gluons. Possibly this could also help with the problem of the
long-range dipole field. We might imagine that as a quark and antiquark separate, they pull
out between them a “chain” of constituent gluons, with each gluon in the chain bound to its
nearest neighbors by Coulombic forces. This is the “gluon chain model” [40], and it provides
a picture of the QCD flux tube as a kind of discretized string. Whether this gluon-chain picture
will eventually emerge from investigations in Coulomb gauge or, alternatively, from a recent
worldsheet formulation of gauge theory quantized in light-cone gauge [41], remains to be
seen.

Before leaving this topic, we might ask: Given that instantaneous one-gluon exchange
results in a linear attractive potential between a quark andan antiquark, what would be
situation for two quarks? Would we end up with a finite energy color non-singlet state and a
linear repulsive potential? That would, of course, be a realdisaster for this approach. In fact,
in calculating Coulomb interaction energies of composite states one has to carefully take into
account the cancellation of divergences which are encountered in both the quark self-energy
and one-gluon exchange terms. It turns out that for color singlets, these divergences precisely
cancel, leaving a finite attractive potential, while in non-singlets the divergent self-energies are
not cancelled, and the energy of the non-singlet state is infinite. This cancellation is discussed
in ref. [42], and demonstrated, in the context of a Bethe-Salpeter approach, in ref. [43] and
references therein.

3.4. Functional Approaches

Functional approaches employed to the infrared behaviour of QCD are Schwinger-Dyson
Equations (SDEs) and Renormalization Group Equations‖, for a recent review see [45]. In
the Landau gauge the analytical treatment of these equations in the far infrared have provided
a number of exact inequalities for the infrared exponents ofgluon and ghost one-particle
irreducible (1PI) Green functions. Gauge fixing is hereby performed by the standard Faddeev-
Popov method supplemented by auxiliary conditions such that the generating functional
consists of an integral over gauge field configurations that are contained in the first Gribov
region. The employed method has been justified using ghost-free stochastic quantisation [46].
The resulting SDEs for 1PI-Green functions have been solvedanalytically in the infrared to all
orders in a skeleton expansion (i.e. a loop expansion using full propagators and vertices) [47].
It turns out that these Green’s functions are infrared singular in caseall external momenta
go to zero. A remarkable property of the infrared solution isthe fact that it is generated by

‖ A combination of both methods has recently allowed touniquelydetermine the infrared behavior of all Green
functions of Landau gauge Yang-Mills theory [44].



Quark Confinement: The Hard Problem of Hadron Physics 15

exactly those parts of the SDEs that involve ghost loops. In other words: the Faddeev-Popov
determinant dominates the infrared behaviour of non-Abelian Yang-Mills theories. Thus an
infrared asymptotic theory can be obtained by ‘quenching‘ the Yang-Mills action,i.e. setting
exp(−SY M) = 1 in the generating functional [46]. The solution of this asymptotic theory is
given by power laws.

The basic examples for power law solutions are the ghost and gluon propagators

DG(p2) = −G(p2)

p2 , Dµν(p2) =

(

δµν −
pµpν

p2

)

Z(p2)

p2 . (25)

The corresponding power laws in the infrared are

G(p2) ∼ (p2)−κ, Z(p2) ∼ (p2)2κ . (26)

Sinceκ is positive [48] one obtains an infrared enhanced ghost and an infrared suppressed
gluon propagator. In Landau gauge an explicit value forκ can be derived from the observation
that the dressed ghost-gluon vertex becomes (almost) bare in the infrared, one then obtains
κ = (93−

√
1201)/98≈ 0.595 [49, 50].Φ

Let us shortly digress here and mention in which sense this leads to the so-called
“kinematic confinement” of transverse gluons.† First we note that covariant quantum
theories of gauge fields require indefinite metric spaces. Abandoning the positivity of the
representation space already implies to give up one of the axioms of standard quantum field
theory. Maintaining the much stronger principle of locality gluon confinement then naturally
relates to the violation of positivity in the gauge field sector, seee.g.ref. [55]. Similar to QED,
where the Gupta-Bleuler prescription [56] is to enforce theLorentz condition on physical
states, a semi-definite physical subspace can be defined as the kernel of an operator. The
physical states then correspond to (equivalence classes of) states in this subspace. Covariance
implies, besides transverse photons, the existence of longitudinal and timelike (“scalar”)
photons in QED. The latter two form metric partners in the indefinite space: They cancel
against each other in everyS-matrix element and therefore do not contribute to observables.

In QCD cancelations of unphysical degrees of freedom in theS-matrix also occur but are
more complicated due to the self-interaction of the gluons.A consistent quantum formulation
in a functional integral approach leads to the introductionof ghost fields [57]. The proof of
the cancelation of longitudinal and timelike gluons in every S-matrix element to all orders
in perturbation theory has been possible by employing the BRST symmetry [58] of the
covariantly gauge fixed theory. At this point one has achieved a consistent quantization.

Based on the BRST formalism and implications of the Gribov horizon [59] positivity
violation of the propagator of transverse gluons has been a long-standing conjecture for
which there is now compelling evidence, seee.g.ref. [60] and references therein. The basic
features underlying these gluon properties, namely the infrared suppression of correlations

Φ Dynamical quarks do not change the infrared behavior of the gluon and ghost propagators [51].
† The mechanism becomes most transparent in a covariant formulation which includes the choice of a covariant
gauge, of course. However, the arguments for the positivityviolation in the propagator of transverse gluons are
analogously applicable in the Coulomb gauge, and numericalevidence for it is equally firm as in the Landau
gauge case, seee.g.refs. [34, 52, 53, 54, 37].
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of transverse gluons and the infrared enhancement of ghost correlations, has been verified in
quite a number of lattice Monte-Carlo calculations and different functional approaches. One
then concludes that transverse gluons possess metric partners, they form a so-called BRST
quartet together with gluon-ghost, gluon-antighost and gluon-ghost-antighost states. Gluon
confinement then occurs as necessarily complete cancelation between amplitudes (Feynman
diagrams) containing these states as asymptotic states (asexternal lines). This is in line with
the näive interpretation of a gluon propagator which vanishes in the infrared: A zero in the
propagator atp2 = 0 implies that there is no propagation of gluons at long distances.‡

An additional important consequence of this infrared solution for gluons and ghosts is
the qualitative universality of the running coupling in theinfrared. Renormalisation group
invariant couplings can be defined from either of the primitively divergent vertices of Yang-
Mills-theory,i.e. from the ghost-gluon vertex, the three-gluon vertex, or thefour-gluon vertex.
All three couplings approach a fixed point in the infrared. However, the explicit value of the
fixed point may be different for each coupling. For a bare ghost-gluon vertex one obtains
αgh−gl(0) ≈ 8.92/Nc [49, 62]; the other couplings have not been determined yet.S This
behavior sheds light on the existence of the power law solutions: pure Yang-Mills theory
becomes approximately conformal in the far infrared.

As explained in the introduction the static quark potentialis a property of would-be
infinitely heavy quarks. To extend the infrared analysis to full QCD [63] one concentrates
first on the quark sector of quenched QCD and chooses the masses of the valence quarks to be
large,i.e. m> ΛQCD. The remaining scales belowΛQCD are those of the external momenta of
the Green functions. Without loss of generality these can bechosen to be equal, since infrared
singularities in the corresponding loop integrals appear only when all external scales go to zero
[47]. One can then employ SDEs to determine the selfconsistent solutions in terms of powers
of the small external momentum scalep2 ≪ ΛQCD. The SDEs which have to be considered in
addition to the SDEs of Yang-Mills theory are the one for the quark propagator and the quark-
gluon vertex. The dressed quark-gluon vertexΓµ consists in general of twelve Dirac tensor
structures. Some of these tensor structures would have to vanish if chiral symmetry would
not be broken (either explicitely or dynamically). Especially those Dirac-scalar structures
are, in the chiral limit, generated non-perturbatively together with the dynamical quark mass
function in a self-consistent fashion: Dynamical chiral symmetry breaking reflects itself thus
not only in the propagator but also in a three-point function.

An infrared analysis of the full set of DSEs reveals that a solution exists such that vector
and scalar components of the quark-gluon vertex are infrared divergent with an exponent
related toκ [63]. A numerical solution of truncated set of SDEs confirms this infrared
behavior. Similar to the Yang-Mills sector it is the diagramcontaining the ghost loop
that dominates. Thus all effects from the Yang-Mills sectorare generated by the infrared
asymptotic theory described above. More importantly, in the quark sector the driving pieces
of this solution is the scalar Dirac amplitude of the quark-gluon vertex and the scalar part of

‡ For chromomagnetic gluons this picture persists in the high-temperature phase of QCD [61].
S For all these couplings the infrared fixed point behaves like1/Nc thus obeying the correct large-Nc behavior
for all values ofNc. A detailed investigation of the large-Nc limit of this approach is, however, still lacking.
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= + + (..)

Figure 3. The four-quark 1PI Green’s function and the first terms of itsskeleton expansion,
adapted from ref. [47].

the quark propagator. Both pieces are only present when chiral symmetry is broken.
The static quark potential is obtained from the four-quark 1PI Green’s functionH(p),

which is given in Fig. 3 together with its skeleton expansion. From the infrared analysis one
infers thatH(p) ∼ (p2)−2 in the infrared. From the usual relation

V(r) =
∫

d3p
(2π)3H(p0 = 0,p)eipr ∼ |r | (27)

between the static four-quark functionH(p0 = 0,p) and the quark potentialV(r) one therefore
obtains a linear rising potential. Correspondingly, the running coupling from the quark-gluon
vertex turns out to be proportional to 1/p2 in the infrared,i.e. contrary to the couplings from
the Yang-Mills vertices this coupling is singular in the infrared.

Already the first term in the skeleton expansion,i.e. the effective, nonperturbative one-
gluon exchange displayed in Fig. 3, generates this result. Since the following terms in the
expansion are equally enhanced in the infrared, the string tension will be built up by summing
over an infinite number of diagrams. The latter property is bad news for the usefulness
of the approach but it had to be expected in the first place. Since already an effective,
nonperturbative one-gluon exchange generates the confining potential one is again, as in the
previous subsection, confronted with the problem of unwanted van-der-Waals forces. The
suppressed gluon propagator looks at first sight helpful because it implies that there are no
long-range correlations between the gluons,i.e. the gauge fields, and thus for chromoelctric
and chromomagnetic fields at large distances. However, the problem of avoiding long-range
multipole fields has only be shifted from the two-point correlation to a specific three-point
function, namely the quark-gluon vertex. In addition, as very likely every picture based on a
finite number of quasi-particles has to fail in explaining the Lüscher term (17) one can already
conclude that the series in Fig. 3 needs to be an infinite one ifthe picture were able to describe
quark confinement correctly.

Last but not least, N-ality can occur in such pictures only ifcancelations ase.g.between
gluons and adjoint quarks will take place. Casimir scaling,on the other hand, requires that
at intermediate distances these cancelations are still absent or incomplete. Explaining these
features of confinement is still a completely unsolved challenge within functional approaches.

3.5. AdS/CFT correspondence

There is compelling evidence that a type-IIB closed superstring theory in ten dimensions is
dual to anN = 4 super-Yang-Mills (sYM) theory. The space-time in the superstring theory is
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such that five dimensions form a sphere, and the other five dimensions a non-compact anti-de
Sitter space, briefly denoted by AdS5. Hereby the sphere has a (positive) radiusRand AdS5 a
negative curvature of the same scale

ds2 = R2dΩ5+
R2

r2 dr2 +
r2

R2ηµνdxµdxν. (28)

TheN = 4 sYM theory has as much supersymmetry a gauge theory can have: It is a conformal
field theory (CFT). Mathematically, the duality is built on the fact that the isometry group of
AdS5 is isomorphic to the conformal group of four-dimensional Minkowski space, SO(4,2).‖
Employing a suitable background metric the gauge coupling is inversely proportional to the
string tension:

g2Nc = R4/α′2. (29)

This implies that the strong coupling gauge theory is dual toweak coupling string theory, and
thus, as the low-energy limit of superstring theory is supergravity, to weak coupling gravity.

Real-world QCD is not supersymmetric. Therefore one needs to break supersymmetry
and therefore also conformal invariance. The corresponding models typically modify the
metric in the infrared by introducing cutoffs, or equivalently black hole type backgrounds.
The corresponding minimal distance is then identified with the inverse of the QCD scale:Φ

rmin = 1/ΛQCD. (30)

In those black hole metrics the minimal surface spanning a Wilson loop of increasing size
eventually has to approachr = rmin. Beyond this point no red shift factor contributes to the
area of the surface, it grows proportional toR2r2

min providing a non-vanishing string tension

σ = 1/2πα′
QCD = R2r2

min/2πα′ =
√

2g2Nc/2πΛ2
QCD. (31)

Since the first considerations of Wilson loops within AdS/CFT correspondence, see
e.g. ref. [64], a large number of papers appeared on the subject, and a summary of these
developments is far beyond the scope of the present article.We nevertheless want to note that
the N-ality condition has recently been shown to be fulfilledin this approach [65].

Phenomenogical tests of AdS/CFT correspondence are abundant, it has especially been
successful in reproducing general properties of scattering processes of QCD bound states.
Hereby confinement can be simulated by cutting off the extension of hadron wave function
into the “fifth”dimension [66]. The interested reader can obtain a first impression from refs.
[67], the references therein provide a reasonable guide forfurther reading.

It is plainly obvious but it should nevertheless be emphasized here: The AdS/CFT
correspondence provides no explanation for confinement. Itis a calculational tool relating
low-energy, non-perturbative QCD to weak-coupling gravity where the background has been

‖ It is an irony of this field that this first example of AdS/CFT duality does not confine becauseN = 4 sYM
theory is exactly conformal. When a large Wilson loop is introduced on the boundary of AdS5 the red shift factor
r2/R2 allows the minimal surface spanning the loop to stay finite implying a perimeter instead of an area law for
the sYM Wilson loop.
Φ In most corresponding calculations the strong-coupling limit of the smallest glueball mass is used to set the
scale.
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chosensuch to provide confinement in QCD. However, as some of the related problems can
be treated much easier in the gravity language the approach has and likely will furthermore
provide insights into the special properties of possible confinement scenarios in QCD.

4. Conclusions

It is odd to have a complete theory of one of the four well-established forces of nature
− the strong nuclear force− and still not have general agreement, after more than thirty
years of effort, on how that force really works at long distances. Nevertheless, therehas
been appreciable progress in this subject, much of it aided by computer simulations. First
of all there is a better appreciation of the general featuresof the confining force, e.g. the
color group representation dependencies (N-ality, Casimir scaling) of the confining potential,
and the existence and string-like properties of the color electric flux tube, which constrain
possible explanations of confinement. Secondly, there exist a reasonable set of suggestions
about the origin of confinement, some dating back to the late 1970’s and some much more
recent, which have, over the last decade, received substantial support from lattice Monte Carlo
simulations. It has turned out that a number of these suggestions are related in interesting
ways: monopole wordlines, essential to dual-superconductor scenarios, are found to lie on
center vortex worldsheets, and center vortex worldsheets appear to be crucial in some ways to
the confinement scenario in Coulomb gauge. Both Coulomb and Landau gauge investigations
emphasize the importance of the Faddeev-Popov operator, and the infrared properties of the
ghost propagator.

There are other proposals for the confinement mechanism which we have not included
here. It is impossible to provide an exhaustive discussion in a short article, so we have
concentrated on those proposals which, in our judgement, seem best supported by existing
numerical studies or other arguments. But it is certainly not excluded that progress may come
from some quite different direction.

The confinement problem, in our view, is one of the truly fundamental problems in
physics. Quark confinement is the essential link between themicroscopic quark-gluon degrees
of freedom of QCD, and the actual strong-interaction spectrum of color-neutral mesons,
baryons, and nuclei. Until this phenomenon is well understood, something essential is still
lacking in our grasp of the foundations of nuclear physics, and the deeper mechanisms of non-
abelian gauge theory. Although the confinement problem is hard, the solution is important,
and well worth pursuing.

Acknowledgments

We are grateful to our co-workers, Per Amundsen, Manfried Faber, Christian Fischer, Kurt
Langfeld, Felipe Llanes Estrada, Axel Maas,Štefan Olejnı́k, Hugo Reinhardt, Lorenz von
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